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ture dependence of the exchange resonance is presumed 
to arise from a large magnetocrystalline anisotropy 
energy as in SmIG. Supplementary transmission meas
urements with samples of HoGaG and 5% Ho-YIG 
indicate that most of the remaining absorptions in the 
iron garnet are probably transitions to higher crystal 
field levels as modified by the iron exchange field. 

The absence of any observable magnetic absorption 
spectrum in GdIG (L—0) validates our conclusion that 
the strength of single rare-earth ion transitions is de
termined by the anisotropy and corresponding inequiv-

I. INTRODUCTION 

THE temperature and composition dependence of 
the elastic moduli of jS-CuZn have attracted con

siderable experimental and theoretical interest. In pre
vious work the shear constant C" showed an anomalous 
increase with increasing temperature,1 and for off-
stoichiometric alloys the ratio C/C was found to be 
abnormally large.2 These observations were basically 
involved with the question of the stability of /3-phase 
alloys, and this was investigated by Jones3 and by 
Zener.4 Jones found the fi phase in CuZn to be rendered 
stable by a large contribution to the shear constants 
from the overlap of the Fermi surface with the Brillouin 
zone. Such an effect is not unexpected, since a bcc 
lattice of hard spheres will offer no resistance to a 
(110) [IlOj shear. Thus, the system will be unstable, 
so that in the real lattice the electrostatic interaction, 
second-neighbor terms, and the Fermi overlap must 
combine to offset the nearest-neighbor repulsive con-

1 J. S. Rinehart, Phys. Rev. 58, 365 (1940); 59, 308 (1941); R. 
A. Artman, J. Appl. Phys. 23, 475 (1952). 

2W. Webb, Phys. Rev. 55, 297 (1939); J. S. Rinehart, ibid. 
58, 365 (1940); 59, 308 (1941). See also D. Lazarus, ibid. 76, 545 
(1949). 

3 H . Jones, Phil. Mag. 43, 105 (1952). See also, I. Isenberg, 
Phys. Rev. 83, 637 (1951). 

4 C. Zener, Phys. Rev. 71, 846 (1947). 
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alence of the rare-earth ions produced by local crystal
line electric fields at the various types of sites. 
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tribution to C". In the absence of second-neighbor in-
p teractions, a substantial electronic contribution to the 

shear constants is not unreasonable. With second-
neighbor interactions, however, the electronic contribu-

3 tion becomes less clearly defined. Because these effects 
should depend sensitively on composition, in the pre
sent work we have studied the composition dependence 
of the room-temperature elastic constants in the ft 

a phase. To assist our understanding of second-neighbor 
effects, we have also examined the temperature de-

1 pendence of the elastic constants of an alloy of equi-
atomic composition. 

J n. EXPERIMENTAL RESULTS 

1 The single crystals used in this experiment were 
? grown by the Bridgman method, using graphite cru-
? cibles sealed under a partial pressure of argon in vycor 
t tubes. After suitable orientation by Laue photographs, 

specimens were cut from the crystals and machined to 
have exposed faces perpendicular to both the [10Cf] 
and [110] directions. These faces were lapped optically 

, flat and finished to parallelism to within 0.0001 in. The 
5 material used for the alloys was 99.99% pure copper 

and 99.99% pure zinc. Several alloys made from high 
" purity copper and zinc (99.999%) gave room-tempera

ture elastic constants in agreement with corresponding 
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The elastic moduli of a single crystal of stoichiometric 0-CuZn have been measured as a function of tem
perature in the range 4.2 to 800°K. The temperature variation was found to be normal for all elastic con
stants. In particular, cu is unchanged on passing through the critical temperature Te, while the shear 
constants C and C exhibit a substantial change at Tc. This change is consistent with the configurational 
change due to disordering. 

Measurements were also made on the composition dependence of the room-temperature elastic constants 
in the 0 field. A large variation with composition was found, amounting to almost 100% for the shear 
constant C". This behavior is in qualitative agreement with theory, and suggests substantial contributions 
to the elastic moduli from second-neighbor interactions and the Fermi surface overlap. 
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alloys of lower purity material. Alloys were grown with 
zinc contents of 45.0, 46.0, 47.8, 48.8, and 50.0 at.%. 

To determine the elastic constants, ultrasonic pulse 
measurements were made in the usual fashion.5 The 
low-temperature data were obtained in a manner al
ready described,6 and need no further comment. For 
high-temperature measurements, the crystal was held 
by molybdenum leaf springs onto a copper base, which 
was heated from below by a fine wire spiral heater. The 
transducer was bonded to the crystal with Sauereisen 
P31 cement, and the contact to the transducer made 
by a molybdenum spring. This assembly was held in a 
small ceramic container, which mounted into a vacuum-
tight water-cooled brass can, filled to a partial pressure 
with argon. When packed with insulating cloth, this 
device was steady to better than 1°C over times long 
compared to the measuring interval. The temperatures 
were measured with a potentiometer and a chromel-
alumel thermocouple mounted in the base on which the 
crystal was held. To guard against a possible loss of 
zinc at high temperatures, the ceramic container was 
rilled with chips from the original crystal. Repetition 
of measurements before and after heating yielded the 
same results. Data were taken from 4 to 700°K at 
every 20°K, and every 10°K from 700 to 800°K, the 
critical temperature being at approximately 735°K.7 

Elastic constants were obtained from the wave veloci
ties using the densities determined by Beck and Smith8 

and the coefficient of thermal expansion due to Owen 
and Pickup.9 

IE. EXPERIMENTAL RESULTS 

The temperature variation of the elastic constants of 
a single crystal of 0-CuZn (50.0% Zn) is shown in 
Figs. 1-3. An estimate of 1% for the over-all random 
error in the elastic constants has been taken in drawing 

Temperature (°K) 

FIG. 1. The temperature variation of en. 

5 J. A. Rayne, Phys. Rev. 112, 1125 (1958). 
6 J. A. Rayne, Phys. Rev. 115, 63 (1959). 
7 D. Chipman and B. E. Warren, J. Appi. Phys. 21, 696 (1950). 
8 L . H. Beck and C. S. Smith, J. Metals 4, 1079 (1952). 
9 E. A. Owen and L. Pickup, Proc. Roy. Soc. (London) A145, 

258 (1934). 
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FIG. 2. The temperature variation of the shear constant C=Cu-

these curves. Systematic errors, which leave the relative 
variation of the elastic constants unchanged, have not 
been considered. All of the elastic constants behave 
normally with temperature, in disagreement with pre
vious work.1 The longitudinal mode cu shows virtually 
no change on passing through Tc, indicating that the 
contribution of the electron gas to the elastic constants 
does not change from the ordered to the disordered 
state. Therefore, that part of the variation of the 
elastic constants due to changes in the Fermi energy 
with temperature must be small. 

Unlike en, the shear constants C and C show a sub
stantial change in the vicinity of the critical tempera
ture. Data above the critical temperature are limited 
because of the high ultrasonic attenuation, particularly 
in C", and the a-fi transformation of the quartz trans
ducer. The low temperature data, extrapolated to 0°K, 
give a Debye 0=288±2°K, in good agreement with 
the value obtained from heat capacity measurements.10 

In Fig. 4 the composition dependence of the elastic 
moduli of fi brass is shown. A drastic variation with 

Temperature (°K) 

FIG. 3. The temperature variation of the shear 
constant C/ = |(cn—C12). 

»B. W. Veal and J. A. Rayne. Phys. Rev. 128, 551 (1962). 
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FIG. 4. Composition dependence of the elastic moduli in the # field. 
The squares represent the data of Lazarus (reference 2). 

composition is clearly evident, this variation being al
most 100% for C'. A reversal in the elastic constants 
is well defined in cn, but not clearly resolved in C and 
C. The squares in Fig. 4 represent the data of Lazarus,2 

which differ from the present determinations by about 
3 % for Cn and C, and by 10% for C". We can present 
no satisfactory explanation for these discrepancies. 

IV. DISCUSSION 

If we neglect for the moment the Fermi energy, the 
contributions to the elastic constants from the ion-core 
exchange interactions and the electrostatic interaction 
can be calculated explicitly for ft brass of equiatomic 
composition. For the Coulomb part of the elastic con
stants, we assume ft brass to be derived from the super
position of a CsCl lattice of charges ± J, and bcc lattice 
of charge f. The bcc contributions have been given by 
Fuchs,11 and the CsCl contribution calculated by the 
method of Born and Misra.12 This gives for ordered ft 
brass, in units of 1012 dyn/cm2 : 

cn=0.775, C = 0.499, C'=0.138, 

and for the disordered state: 

cn=0.637, C= 0.502, C'=0.068. 

To calculate the ion-core interaction, we assume that 
the potential W has the same form for all atom pairs 
of the alloy, i.e., WAB=<l>ABe~x, WAA=z(t>AAerx, etc. This 
is done for both first- and second-neighbor interactions: 
for nearest neighbors Xi— r/ph and for nearest neighbors 
X2=l/p2. Here, r=v5a 0 /2 , l=a$\ pi and p2 are constants 
and do is the lattice parameter. For first neighbors the 
exchange contributions are 

C^-faWu C=(4/9)x1(x1-2)W1, (1) 

and for second neighbors 

C=%X2(x2-l)W2, C^-x2W2. (2) 

11 K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936). 
12 R. D. Misra, Proc. Cambridge Phil Soc. 36, 173 (1940). 

I t is not profitable to use this analysis for cn, since 
cn contains a term depending on the energy change of 
the lowest state of the conduction electrons with 
volume; this term is absent from C and C'. We remark 
only that the first-neighbor ionic contribution to Cn is 
the same as that for C. 

The inadequacy of the nearest-neighbor approxima
tion can be shown in two ways: The Fermi contribu
tions to the shear constants given by Jones,3 when used 
with the 0°K elastic constants, yields the impossible 
result # i ~ — 300. To obtain a reasonable value, e.g., 
#1-^-10, the Fermi contributions would have to be in
creased by almost an order of magnitude. Another 
determination can be made by taking the difference of 
each shear constant in the ordered and disordered state, 
thereby eliminating the Fermi terms, and then solving 
the two equations for X\. Taking 800°K as the "dis
ordered" state gives # i=25 , while any extrapolation to 
complete disorder only increases this value. 

I t is, therefore, necessary to invoke a substantial 
second-neighbor contribution to the shear moduli, or a 
large noncentral interaction, in order to give even a 
qualitative discussion of the observed temperature 
variation. Assuming a second-neighbor term, the ionic 
contributions to the shear constants can be written in 
terms of the Cowley13 short-range order parameters 
«i and <X2: at perfect order a\= — 1 and <X2= 1; at perfect 
disorder ai—a2=0. A straightforward calculation gives 
for (1) and (2): 

C = -lx1(U1+a1V1)+lx2(x2-l)(U2+a2V2), 

C=$x1(xi-2)(Ui+a1Vl)-lxi(Ut+a2V2), 
(3) 

where U and V have the same form for both first and 
second neighbors: 

U = (t>AA~\-<l>BB-\-2<l>AB, 

V = <f>AA+<f>BB — 2<t>AB* 

With only first-neighbor interactions, C would increase 
with temperature, since (Ui+aiVi) decreases with T. 
I t is the second-neighbor term that causes C to behave 
normally with temperature. These two terms almost 
balance in C", while in C the first-neighbor term is 
dominant. The qualitative behavior of the elastic con
stants with T then follows: The discontinuities in C 
and C" arise from the rapid variation of at and a2 in 
the vicinity of Tc.

u These variations are additive in 
the shear constants (since <*i<0), but presumably of 
opposite sign in cn, so that no configurational dis
continuity is seen in the bulk modulus. Since the elec
trostatic contribution to C is almost constant with 
temperature, the linear variation of C with T should 
be contained in the ionic terms. Calling the electro
static part Cei and AC=C—Cei, & simple manipulation 
gives 

(d/dt)(\nAC)^x!3, 
13 J. M. Cowley, Phys. Rev. 77, 669 (1950). 
14 P. A. Flinn and G. M. McManus, Phys. Rev. 124, 54 (1961). 
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where f$ is the linear expansion coefficient, approxi
mately 2.6X10~5/°K. In this we have ignored terms 
in da/dT, since these are negligible except near Tc, The 
unknown x is 

x=xi— 2—terms of order (x2— Xi)/xix2. 

In this first approximation, using only xx— 2=x, the 
slope of In AC gives #i==15, and, therefore, since r 
= 2.56 A, p^-0.17 A. This is also the slope of cu with 
Ty which is not unexpected if the electronic and electro
static terms in the bulk modulus do not change much 
except near Tc. 

The large number of unknowns in Eq. (3) makes 
it impossible to determine all of the variables from 
the available data. I t is clear, however, that a 
second-neighbor approximation is sufficient to explain 
the features of the temperature variation of the 
elastic constituents. The contributions from the Fermi 
surface overlap, while appreciable, are insufficient to 
explain the observed behavior in the nearest-neighbor 
approximation. 

To describe the composition dependence of the elastic 
moduli, some of the same considerations apply as those 
used in the above discussion. In Eqs. (1) and (2), the 
term W\ decreases with increasing zinc concentration, 
while W2 increases with increasing zinc content. The 
Fermi contribution increases for both C and C , and 
for cw the volume-dependent electronic term15 increases 
also, as the zinc content is increased. The bulk modulus 
will, therefore, show a decrease due to W\ and then an 
increase due to W2 and the electronic term as the equi-
atomic composition is approached. For the shear con
stant C, the second-neighbor term becomes more nega
tive, so the entire ionic contribution decreases, and C 
decreases despite the increasing Fermi term. Similarly, 
in C all of the terms are increasing, and hence C shows 
a drastic increase as the limit of the £ region is ap
proached. For all of the elastic constants, the variation 

15 H. Jones, J. Appl. Phys. 23, 697 (1952). 

of the electrostatic contribution is of minor impor
tance.15 In view of these considerations, the anomalous 
increase of C with temperature1 is readily explained: 
Since W2 decreases and Wi increases as the copper 
content is increased, when W2 is small enough the first-
neighbor term will be dominant and hence C will 
increase with increasing temperature. This should occur 
where C is a minimum; that is, for alloys with zinc 
concentration < 4 7 % , as observed.1 As before, how
ever, the presence of the second-neighbor interactions 
makes it impossible to estimate the amounts of the 
ionic contributions or the Fermi surface overlap. Since 
both W2 and the overlap term are increasing with in
creasing zinc, it is not possible to separate these two 
effects. I t is apparent that it is not just the overlap 
contribution, but also the second-neighbor exchange 
terms that lead to the stability of the /3-phase CuZn 
alloys. 

V. CONCLUSIONS 

The temperature dependence of the elastic moduli of 
CuZn indicates that second-neighbor ion exchange in
teractions make a substantial contribution to the shear 
constants. The ionic terms show the proper behavior 
with composition to explain the variation of the elastic 
moduli in the /3-phase region, but it is not possible to 
separate the contributions from the second-neighbor 
interaction and the Fermi surface overlap, since both 
have the same composition dependence. The anomaly 
in the temperature variation of the elastic constants of 
off-stoichiometric alloys is explainable by this model. 
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